A team of European scientists has proved within an ESA study that the weird quantum effect called 'entanglement' remains intact over a distance of 144 kilometres. The experiment allows ESA to take a step closer to exploiting entanglement as a way of communicating with satellites with total security.
Quantum entanglement is one of the many non-intuitive features of quantum mechanics. If two photons of light are allowed to properly interact with one another, they can become entangled. One can even directly create pairs of entangled photons using a non-linear process called Spontaneous Parametric Down Conversion (SPDC).
Those two entangled photons can then be separated but as soon as one of them interacts with a third particle, the other photon of the pair will change its quantum state instantaneously. This happens according to the random outcome of the interaction, even though this photon never did interact with a third particle.
Such behaviour has the potential to allow messages to be swapped with complete confidence. This is because, if an eavesdropper listens into the message, the act of detecting the photons will change the entangled partner. These changes would be obvious to the legitimate receiving station and the presence of the eavesdropper would be instantly detected.
A quantum communications system would be a valuable way to transmit banking information, or military communications, or even to distribute feature films without the fear of piracy.
Even though entanglement has been known about for decades, no one has known whether the entanglement decays over long distance. For example, would a beam of entangled photons remain entangled if it passed through the atmosphere of the Earth? On their journey, the photons could interact with atoms and molecules in the air. Would this destroy the entanglement?
If so, entanglement would be useless as a means of communicating with satellites in orbit, because all signals would have to pass through the Earth's atmosphere. Now, an Austrian-German led team have proved conclusively that photons remain entangled over a distance of 144 kilometres through the atmosphere. That means that entangled signal will survive the journey from the surface of the Earth into space, and vice versa.
In September 2005, the European team aimed ESA's one-metre telescope on the Canary Island of Tenerife toward the Roque de los Muchachos Observatory on the neighbouring island of La Palma, 144 kilometres away. On La Palma, a specially built quantum optical terminal generated entangled photon pairs, using the SPDC process, and then sent one photon towards Tenerife, whilst keeping the other for comparison.
Upon comparing the results from Tenerife with those from La Palma, it was obvious that the photons had remained entangled. "We were sending the single-photon beam on a 144 kilometres path through the atmosphere, so this horizontal quantum link can be considered a 'worst case scenario' for a space to ground link," says Josep Perdigues, ESA's Study Manager.
Additional tests with a quantum communication source that generated faint laser pulses instead of entangled photon pairs were performed in 2006. Faint laser pulse sources emulate single photon sources by attenuating the optical power of a standard laser down to single photon regime. Attenuated lasers are technologically much simpler than entangled photon sources or 'true' single photon sources.
The price you have to pay is the unwanted opportunity for information leakage, due to the non-zero probability of having more than one photon per pulse. In practice, this limits the maximum link distance for exchanging securely a key. By implementing a decoy-state protocol in the experiments using a faint laser pulse source, the maximum link distance (yet secure against an eavesdropper’s action) was extended to values representative of a space to ground experiment.
The team are now studying ways to take the experiment into space. "Being in space will mean that we can test entanglement over lines of sight longer than 1 000 kilometres, unfeasible on Earth, thereby extending the validity of Quantum Physics theory to macroscopic scales," says Perdigues. One option is to use the external pallet on the Columbus module of the International Space Station. Another would be to put the quantum optical terminal on a dedicated satellite of its own. The quantum optical terminal is about 100 kg in mass and fits into a one-cubic-metre box.
Credits: ESA
Source: ESA
ESA takes steps toward quantum communications
Subscribe to:
Post Comments (Atom)
Blogger templates
Popular Posts
-
This infrared image from NASA's Spitzer Space Telescope shows the Rosette nebula, a pretty star-forming region more than 5,000 light-ye...
-
These Hubble Space Telescope images of Vesta and Ceres show two of the most massive asteroids in the asteroid belt, a region between Mars a...
-
Bright mid-latitude clouds near the bottom of this view hint at the ongoing cycling of methane on Titan. These cloud streaks are near the s...
-
This image composite highlights the pillars of the Eagle nebula, as seen in infrared light by NASA's Spitzer Space Telescope (bottom) a...
-
NASA has selected proposals, including two from the Jet Propulsion Laboratory in Pasadena, Calif., for future lunar science activities. In ...
-
A team of European scientists has proved within an ESA study that the weird quantum effect called 'entanglement' remains intact ove...
-
The Seven Sisters, also known as the Pleiades star cluster, seem to float on a bed of feathers in a new infrared image from NASA's Spit...
-
The MESSENGER spacecraft snapped a series of images as it approached Venus on June 5. The planet is enshrouded by a global layer of clouds ...
-
In this photograph can be seen lunar craters on the moon, and seas of the moon, the darker and flat areas of the Moon. The seas of the moon ...
-
The first image shows gullies in a crater in Terra Sirenum in the southern hemisphere of Mars. This image was acquired during the winter, w...
Labels
- 117 (1)
- asteroids (1)
- Atlantis (3)
- atmosphere (1)
- cassini (5)
- ceres (1)
- Climate (1)
- cluster (1)
- creation (1)
- Dawn (1)
- eagle (1)
- Earth (1)
- enceladus (2)
- ESA (2)
- exploration (1)
- galaxies (1)
- gliese 581 (1)
- HiRISE (1)
- hubble (1)
- iss (2)
- mars (2)
- messenger (2)
- mission (2)
- moon (2)
- NASA (12)
- nebula (2)
- opportunity (1)
- photos (3)
- pictures (1)
- pillars (1)
- planet (1)
- pleiades (1)
- rosset (1)
- saturn (4)
- space (1)
- spitzer (3)
- star (1)
- STS (3)
- telescope (1)
- Titan (5)
- venus (2)
- vesta (1)
Powered by Blogger.
tags
- 117 (1)
- asteroids (1)
- Atlantis (3)
- atmosphere (1)
- cassini (5)
- ceres (1)
- Climate (1)
- cluster (1)
- creation (1)
- Dawn (1)
- eagle (1)
- Earth (1)
- enceladus (2)
- ESA (2)
- exploration (1)
- galaxies (1)
- gliese 581 (1)
- HiRISE (1)
- hubble (1)
- iss (2)
- mars (2)
- messenger (2)
- mission (2)
- moon (2)
- NASA (12)
- nebula (2)
- opportunity (1)
- photos (3)
- pictures (1)
- pillars (1)
- planet (1)
- pleiades (1)
- rosset (1)
- saturn (4)
- space (1)
- spitzer (3)
- star (1)
- STS (3)
- telescope (1)
- Titan (5)
- venus (2)
- vesta (1)
Blog Archive
-
▼
2007
(26)
-
▼
June
(26)
- Hubble Images of Asteroids Vesta and Ceres
- Weather Without Water
- New Science on the Moon
- Messenger Flies By Venus
- Crews to Fold Arrays, Prep for Spacewalk Repair Tasks
- ESA takes steps toward quantum communications
- Enceladus
- Boring Star May Mean Livelier Planet
- STS-117 Crew Inspected Shuttle Heat Shield
- Mars photos by HiRISE
- New View of Titan III
- New View of Titan II
- Titan
- NASA Updates Shuttle Target Launch Date for Hubble...
- STS 117 Mission
- MESSENGER spacecraft approaches the brightly illum...
- Pillars of Creation
- Pleiades Cluster
- Rosset nebula
- Wind Streaks Landscape and Boosts Rover Power Levels
- M81 Galaxy is Pretty in Pink
- New view of Titan
- Enceladus
- Neon Saturn
- Spitzer Nets Thousands of Galaxies in a Giant Cluster
- Research Finds That Earth's Climate is Approaching...
-
▼
June
(26)
0 comments:
Post a Comment